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MAIN PURPOSE & OUTLINEMAIN PURPOSE & OUTLINE
OF PRESENTATIONOF PRESENTATION

AIMAIM
To highlight the assets, effort required and the related To highlight the assets, effort required and the related 
risks concerning the modeling and control aspects of risks concerning the modeling and control aspects of 
the closedthe closed--loop flow control activity at USAF Academy. loop flow control activity at USAF Academy. 

OUTLINEOUTLINE
IntroductionIntroduction
Modeling IssuesModeling Issues
Estimation IssuesEstimation Issues
Control IssuesControl Issues
Risk AreasRisk Areas
ConclusionsConclusions
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RESEARCH OBJECTIVERESEARCH OBJECTIVE

Better understand the 
physical mechanisms 
involved in the 
closed-loop control of 
fluid instability, with 
the ultimate goal of 
enhancing air vehicle  
performance. 

Develop a closed-
loop robust strategy 
to suppress the Von-
Karman vortex street 
of a bluff body, 
thereby decreasing 
drag and flow-
induced vibration.

Circular Cylinder in water tunnel at USAFA
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TYPICAL CONTROL SYSTEMTYPICAL CONTROL SYSTEM
ARCHITECTUREARCHITECTURE
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CONTROL CONTROL –– LIFE CYCLELIFE CYCLE

MODELING THE CONTROLLED FLOW 
• Truth Model – CFD (Cobalt)
• Evaluation Model – Low-dimensional POD

CONTROL PROBLEM
Vortex Suppression in Cylinder Wake

(Governed by Non-Linear Navier Stokes P.D.E.)

ESTIMATOR
Real-time mapping of PIV 

Measurements onto POD states

CONTROLLER
Real-Time Mapping of POD States to

Actuator Commands

CONTROL STRATEGY VERIFICATION
• Truth Model – CFD (Cobalt)       
• Water Tunnel Test & Evaluation
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MODELING THE 
CONTROLLED FLOW

Cylinder wake flows are dominated by the dynamics of a relativelCylinder wake flows are dominated by the dynamics of a relatively small y small 
number of characteristic largenumber of characteristic large--scale spatial structures, as observed in scale spatial structures, as observed in 
experimental periodically forced vortex sheets. experimental periodically forced vortex sheets. 

A desirable controller will on the one hand simply measure and cA desirable controller will on the one hand simply measure and control a ontrol a 
finite number of largefinite number of large--scale spatial structuresscale spatial structures. On the other hand, it will keep . On the other hand, it will keep 
the wake flow the wake flow low dimensionallow dimensional by not exciting it into a higher dimension by not exciting it into a higher dimension 
state.state.

If the complex spatioIf the complex spatio--temporal information is characterized by a relatively temporal information is characterized by a relatively 
small number of quantities, then feedback can be computationallysmall number of quantities, then feedback can be computationally feasible. feasible. 

Therefore, to obtain a controller that can be implemented, a redTherefore, to obtain a controller that can be implemented, a reduceduced--orderorder--
model) is sought which may be constructed  using POD (Propermodel) is sought which may be constructed  using POD (Proper
Orthogonal Decomposition) and modal truncation techniques.Orthogonal Decomposition) and modal truncation techniques.
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THREE MODEL THREE MODEL 
CONTROL THEORYCONTROL THEORY

EVALUATION MODEL – CFD (COBALT)
Used to simulate real system,
for evaluation of candidate 

controller design
MODEL I

HIGH-ORDER MODEL – POD

For analytical predictions of 
controller performance

MODEL II

LOW-ORDER MODEL – TRUNCATED POD

For control design
MODEL III
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MODELING ASSETSMODELING ASSETS

TRUTH MODELSTRUTH MODELS
–– COBALT: Translating Cylinder (COBALT: Translating Cylinder (NavierNavier Stokes)Stokes)
–– FEMLAB: Wake Instability (FEMLAB: Wake Instability (GinzburgGinzburg--Landau)Landau)

LOWLOW--DIMENSIONAL MODELSDIMENSIONAL MODELS
–– POD Model of an Actively Controlled CylinderPOD Model of an Actively Controlled Cylinder
–– POD Model of POD Model of GinzburgGinzburg--Landau EquationLandau Equation
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The The GinzburgGinzburg--Landau Model  Landau Model  
Main MotivationMain Motivation

The complex The complex GinzburgGinzburg--Landau (GL) equation, with suitable coefficients, has been Landau (GL) equation, with suitable coefficients, has been 
found to model well many phenomena of vortex dynamics in blufffound to model well many phenomena of vortex dynamics in bluff--body (such as a body (such as a 
circular cylinder) wakes.circular cylinder) wakes.

The 1D GL equations have proved useful insight for the descriptiThe 1D GL equations have proved useful insight for the description of global on of global 
modes for purely 2D shedding where the spatial coordinate in themodes for purely 2D shedding where the spatial coordinate in the GL equation GL equation 
coincides with the coincides with the streamwisestreamwise direction (direction (RoussopoulosRoussopoulos and and MonkewitzMonkewitz, 1996)., 1996).

The 1D GL equation, which is derivable from the The 1D GL equation, which is derivable from the NavierNavier--Stokes equations, can be Stokes equations, can be 
modeled to contain all of the stability features of the 2D cylinmodeled to contain all of the stability features of the 2D cylinder wake pertinent to der wake pertinent to 
control.control.

Furthermore, the GL model is frequently used in literature for wFurthermore, the GL model is frequently used in literature for wake control studies ake control studies 
and has been shown to allow semiand has been shown to allow semi--qualitative predictions of the wake with qualitative predictions of the wake with 
feedback (feedback (GilliesGillies, 2000). , 2000). 

An attractive characteristic of the GL model is that it is relatAn attractive characteristic of the GL model is that it is relatively straightforward ively straightforward 
to integrate numerically and allows to integrate numerically and allows relatively rapidrelatively rapid prototyping of control prototyping of control 
strategies.strategies.
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TRUTH MODEL TRUTH MODEL –– COBALTCOBALT
Translating Cylinder (Translating Cylinder (NavierNavier Stokes)Stokes)

1.351.351.61.6CCDD

20 Hz20 Hz20 Hz20 HzSheddingShedding
FrequencyFrequency

0.180.180.180.18Strouhal #Strouhal #

ComputationalComputationalExperimentalExperimental

C1C Elliott Leigh & C1C Lucas Kippert
under supervision of Maj. Jim Forsythe
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TRUTH MODEL TRUTH MODEL -- FEMLABFEMLAB
Wake Instability (Wake Instability (GinzburgGinzburg--Landau)Landau)

•A FEMLAB model was developed to solve 
the Ginzburg-Landau equation that 
contains all the stability features of the     
2-D cylinder wake pertinent to control.

•The developed model was exported to 
SIMULINK where the open loop behavior 
was examined.

•Simulation results show that the 
FEMLAB model predicted the value of 

to within 0.3% of that 
obtained by Gillies (2000) based on the 
same coefficients of the Ginzburg-Landau 
equation. 

•The SIMULINK model will now be 
modified for the closed-loop studies.

42.3crito =µ=µ
A

Wake Real Part

Wake Modulus
X
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QUALITATIVE LOOK AT QUALITATIVE LOOK AT 
WAKE OSCILLATIONSWAKE OSCILLATIONS
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FEMLAB Results for FEMLAB Results for GinzburgGinzburg--Landau EquationLandau Equation

COBALT Results for Cylinder Wake (COBALT Results for Cylinder Wake (NavierNavier Stokes)Stokes)

Note: A converged solution has a periodic sine wave (Lift vs Iterations)
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ClosedClosed--Loop Control of the Loop Control of the 
GinzburgGinzburg--Landau EquationLandau Equation

SIMULINK MODEL SIMULINK MODEL 

Commands to 
Change Boundary 
Conditions

Sensor output 

Activates 
Closed-loop 
Control at 
Desired Time

Wake Real Part

Wake Modulus
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LOWLOW--DIMENSIONAL MODELDIMENSIONAL MODEL
POD of an Actively Controlled CylinderPOD of an Actively Controlled Cylinder

To find the characteristic features To find the characteristic features 
of the flow field, one requires a of the flow field, one requires a 
rational approach for identifying rational approach for identifying 
these features.these features.

In this effort, we used the proper In this effort, we used the proper 
orthogonal decomposition, or orthogonal decomposition, or 
POD, to identify the POD, to identify the 
characteristics features, or characteristics features, or 
modes, of a  cylinder wake. modes, of a  cylinder wake. 

This method is an optimal This method is an optimal 
approach in that it will capture the approach in that it will capture the 
largest amount of the flow energy largest amount of the flow energy 
in the fewest modes than any in the fewest modes than any 
other decomposition of the flow. other decomposition of the flow. 

The figure shows the The figure shows the 
reconstructed velocity in the wake reconstructed velocity in the wake 
of the forced cylinder based on of the forced cylinder based on 
water tunnel experiments.

POD Reconstruction – Mode I

Forced Flow Ω1 = 0.2

water tunnel experiments.
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TWO MODE POD MODELTWO MODE POD MODEL
BASED ON WATER TUNNEL DATABASED ON WATER TUNNEL DATA
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POD MODEL OF CYLINDER POD MODEL OF CYLINDER 
TIME DEPENDENT COEFFICIENTS OF FIRST 8 MODESTIME DEPENDENT COEFFICIENTS OF FIRST 8 MODES

BASED ON WATER TUNNEL DATABASED ON WATER TUNNEL DATA
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LOWLOW--DIMENSIONAL MODELDIMENSIONAL MODEL
POD of POD of GinzburgGinzburg--Landau Equation Based on Data Landau Equation Based on Data 

from Nonfrom Non--Linear Analysis Using FEMLABLinear Analysis Using FEMLAB
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MODELING ISSUESMODELING ISSUES
UPCOMING EFFORTUPCOMING EFFORT

TRUTH MODELTRUTH MODEL
–– OnOn--going effort with COBALTgoing effort with COBALT--CFD to modify software in order to CFD to modify software in order to 

enable closedenable closed--loop control.loop control.
–– Experimental verification of the modified COBALT CFD Model.Experimental verification of the modified COBALT CFD Model.
–– PAYOFFPAYOFF: Enable extensive closed: Enable extensive closed--loop studies.loop studies.

LOWLOW--DIMENSIONAL MODELDIMENSIONAL MODEL
–– Further development of POD Model to quantitatively incorporate tFurther development of POD Model to quantitatively incorporate the he 

control input.control input.
–– Develop conditions for Develop conditions for ObservabilityObservability and Controllability of POD Modeland Controllability of POD Model
–– Experimental verification of the modified POD Model.Experimental verification of the modified POD Model.
–– PAYOFFPAYOFF: Enable enhanced controller design.: Enable enhanced controller design.
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ADDRESSING THE 
ESTIMATION PROBLEM

A State EstimatorA State Estimator is required  to accept the sensor measurements and produce an is required  to accept the sensor measurements and produce an 
estimate of the state, since the states of the POD model are notestimate of the state, since the states of the POD model are not measurable. measurable. 

As Re increases, more global modes contribute.As Re increases, more global modes contribute.

Sensor outputs are contaminated by the residual modes (Sensor outputs are contaminated by the residual modes (Observation Spillover).Observation Spillover).

Beyond a critical Re, the effort necessary to control the most dBeyond a critical Re, the effort necessary to control the most dominant mode or modes ominant mode or modes 
merely destabilizes the next most unstable mode (Spillover Phenomerely destabilizes the next most unstable mode (Spillover Phenomenon).menon).

As a result, oscillations may be suppressed at a particular sensAs a result, oscillations may be suppressed at a particular sensor location but are or location but are 
aggravated elsewhere. Therefore, spatially distributed sensors aaggravated elsewhere. Therefore, spatially distributed sensors are needed. Conditions re needed. Conditions 
for for OBSERVABILITY OBSERVABILITY and the number and placement of the sensors is another major and the number and placement of the sensors is another major 
issue.issue.

The is nonThe is non--linear and this characteristic needs to be accounted for during linear and this characteristic needs to be accounted for during the the 
development of the estimator. development of the estimator. 

Due to the nonDue to the non--linear nature and complexity of the linear nature and complexity of the spatiospatio--temporal response of the wake, temporal response of the wake, 
a robust nona robust non--linear estimator is required to obtain the necessary state estimlinear estimator is required to obtain the necessary state estimation.ation.
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POD ESTIMATOR DESIGNPOD ESTIMATOR DESIGN

For a  given actuator input, a finite set of POD modes is obtainFor a  given actuator input, a finite set of POD modes is obtained from ed from 
observations of the cylinder wake velocity field.observations of the cylinder wake velocity field.

If the observed response of the wake to parameters of an actual If the observed response of the wake to parameters of an actual control actuator control actuator 
is recorded from an experiment, then the  physical controlis recorded from an experiment, then the  physical control--mode interaction is mode interaction is 
estimated empirically using Soft Computing techniques.estimated empirically using Soft Computing techniques.

The estimator is The estimator is trainedtrained to predict observed response of the POD modes from to predict observed response of the POD modes from 
the physical actuation of the velocity field in an experiment. the physical actuation of the velocity field in an experiment. 

With adequate training, the nonWith adequate training, the non--linear mapping between actuation and temporal linear mapping between actuation and temporal 
behavior of the forced wake in the POD space is obtained.behavior of the forced wake in the POD space is obtained.

The relationship between present, past and future flow state is The relationship between present, past and future flow state is predicted (for predicted (for 
each discrete time step) as the estimator, which has the form ofeach discrete time step) as the estimator, which has the form of a onea one--step step 
predictor, is continually supplied with present and past flow stpredictor, is continually supplied with present and past flow states.ates.
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ESTIMATION ASSETSESTIMATION ASSETS

A Neural estimator was designed to emulate an A Neural estimator was designed to emulate an 
adequate representation of the wake by  POD modes adequate representation of the wake by  POD modes 
generated by large enough generated by large enough nonnon--stationary data stationary data 
ensemble ensemble ((GilliesGillies).).

Application of ANFIS (Application of ANFIS (AAdaptive daptive NNeuroeuro--FFuzzy uzzy IInference nference 
SSystem) for prediction of chaotic time series prediction. ystem) for prediction of chaotic time series prediction. 
The ANFIS algorithm is part of The ANFIS algorithm is part of MATLAB’sMATLAB’s Fuzzy Logic Fuzzy Logic 
Toolbox. Toolbox. 
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Neural Emulator (Neural Emulator (GilliesGillies))
Mapping Sensor Measurements to POD States Mapping Sensor Measurements to POD States 

for Cylinder Wakefor Cylinder Wake
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ANFIS as a ANFIS as a NeuroNeuro--FuzzyFuzzy
Modeling ToolModeling Tool

First we generalize neural First we generalize neural 
networks architectures to networks architectures to 
obtain adaptive networks, obtain adaptive networks, 
and then we do a and then we do a 
specialization to derive fuzzy specialization to derive fuzzy 
inference systems inference systems 
represented by adaptive represented by adaptive 
networks (ANFIS). networks (ANFIS). 

During the processes of During the processes of 
generalization and generalization and 
specialization, the specialization, the 
backpropagationbackpropagation techniques techniques 
used for training neural used for training neural 
networks can be carried over networks can be carried over 
directly, so ANFIS can be directly, so ANFIS can be 
trained using the same trained using the same 
techniques. techniques. 

Adaptive 
networks

Generalize
Specialization

Fuzzy inference
systems

Neural 
networks
Back Propagation

Learning ANFIS
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Using ANFIS for Chaotic 
Time Series Prediction

ANFIS is used to predict a time series that is generated by the Mackey-Glass 
(MG) time-delay differential equation.

This time series is chaotic, and so there is no clearly defined period. The series 
will not converge or diverge, and the trajectory is highly sensitive to initial 
conditions.

This is a benchmark problem in the neural network and fuzzy modeling research 
communities. ANFIS Prediction

Prediction Errors

Mackey-Glass Chaotic Time Series
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ESTIMATION ISSUESESTIMATION ISSUES
UPCOMING EFFORTUPCOMING EFFORT

Using Using MATLAB’sMATLAB’s ANFIS to reproduce the Emulator ANFIS to reproduce the Emulator 
developed by developed by GilliesGillies for the Cylinder Wake (mapping of  for the Cylinder Wake (mapping of  
sensor measurements to POD states).sensor measurements to POD states).

FineFine--tuning the resulting fuzzy tuning the resulting fuzzy approximatorapproximator from ANFIS to from ANFIS to 
quantitativelyquantitatively emulate the response to arbitrary control emulate the response to arbitrary control 
inputs.inputs.

Computational Evaluation of Estimator (Benchmarks I & II)Computational Evaluation of Estimator (Benchmarks I & II)

Experimental verification of the developed Experimental verification of the developed NeuroNeuro--Fuzzy Fuzzy 
Estimator (Benchmark III).  Estimator (Benchmark III).  
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ADDRESSING THE 
CONTROL PROBLEM

FLOW MODEL
• Complexity  
• Size (DOFs)

COMPENSATION 
USING ROBUST 

CONTROL
TECHNIQUES

PROBLEM AREAS 
1. MODELING AREAS
* Parameter Errors            
* Model-order Errors        
* Neglected Disturbances
* Neglected nonlinearities
2. ERRORS IN            

OPTIMALITY 
PREDICTION

THREE – MODEL
CONTROL 
THEORY

STATE OF THE 
ART CONTROL
TECHNIQUES +
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ROBUSTNESS:ROBUSTNESS:
AN ESSENTIAL REQUIREMENTAN ESSENTIAL REQUIREMENT

The uncertainties inherent with wake flow dynamics and the effecThe uncertainties inherent with wake flow dynamics and the effects of various ts of various 
disturbances make disturbances make robustness robustness an essential attribute of the control system.an essential attribute of the control system.

These uncertainties are a result of modeling errors and unforeseThese uncertainties are a result of modeling errors and unforeseen changes.en changes.

Types of RobustnessTypes of Robustness: : Stability Robust SystemsStability Robust Systems relates to closedrelates to closed--loop loop 
systems that remain stable in light of uncertainty, whereas, systems that remain stable in light of uncertainty, whereas, Performance Performance 
Robust SystemsRobust Systems refers to closedrefers to closed--loop systems that maintain an acceptable loop systems that maintain an acceptable 
level of performance.  level of performance.  

Although stability robustness is imperative, performance robustnAlthough stability robustness is imperative, performance robustness can be a ess can be a 
deciding factor in the selection of an appropriate control law. deciding factor in the selection of an appropriate control law. 

In order to circumvent many of the modeling and control problemsIn order to circumvent many of the modeling and control problems mentioned, mentioned, 
an controller strategy based on inherently robust soft computingan controller strategy based on inherently robust soft computing
techniques (Neural Nets and Fuzzy Logic) has been selectedtechniques (Neural Nets and Fuzzy Logic) has been selected..
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CONTROLLER ASSETSCONTROLLER ASSETS

A Neural controller was designed to provide realA Neural controller was designed to provide real--time mapping time mapping 
of POD states to actuator commands (of POD states to actuator commands (GilliesGillies).).

FirstFirst--hand experience in successfully  developing and applying hand experience in successfully  developing and applying 
fuzzy logic for control of flexible structures (vibration fuzzy logic for control of flexible structures (vibration 
suppression, flutter suppression and noise attenuation).suppression, flutter suppression and noise attenuation).

Modification of the above fuzzy logic tools for nonModification of the above fuzzy logic tools for non--linear linear 
system control. Successful application for control of the system control. Successful application for control of the 
chaotic Van chaotic Van derder PolPol oscillator, which is often used as a simple oscillator, which is often used as a simple 
model for wake instability studies.model for wake instability studies.
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Neural Controller (Neural Controller (GilliesGillies) ) 
Mapping of POD States to Mapping of POD States to 

Actuator CommandsActuator Commands



Aeronautics Research Center – March 2002

IMPLEMENTING A FUZZY IMPLEMENTING A FUZZY 
CONTROLLERCONTROLLER

Relative ease and simplicity of implementation and Relative ease and simplicity of implementation and 
robustness characteristics. robustness characteristics. 

The “gains” of fuzzy controller may be adapted in realThe “gains” of fuzzy controller may be adapted in real--
time to provide fairly fast control for large deviations, of time to provide fairly fast control for large deviations, of 
the measured state of the plant from the desired state, the measured state of the plant from the desired state, 
and a minor amount of control for small deviations.and a minor amount of control for small deviations.

The successful implementation of a fuzzy logic The successful implementation of a fuzzy logic 
controller depends, among other design aspects, on the controller depends, among other design aspects, on the 
heuristic rule base from which control actions are heuristic rule base from which control actions are 
derived.derived.
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TRAINING A FUZZY LOGIC CONTROLLERTRAINING A FUZZY LOGIC CONTROLLER
Define  Plant  Model

Develop  Optimal   Controller

Gain  Insight  on Character
  of  Desired Controller

Translate  Insight  into
Heuristic  Set  of
If-Then  Rules

Build  Rest  of  Fuzzy
Controller:  Fuzzifier,

Inference  Engine,  and
Defuzzufier

Run  Simulations

Is
Error
 Small

?

Tune
Membership

Functions of I/O
Variables

End
Yes

No
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X

 fF

THE UNIVERSAL
APPROXIMATOR
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FUZZY LOGIC CONTROLFUZZY LOGIC CONTROL
FIRST HAND EXPERIENCEFIRST HAND EXPERIENCE

 

 
Type of 
System 
Studied 

 
Treatment

 
Robust 
Control 
(PU, SN, 

NC) 
 

 
Comparison 
with other 

Control 
Methods 

 

 
Observer 

 
Monte 
Carlo 

Stability 
Analysis 

 
Two-Mass Spring 
(ACC Benchmark) 
 

 
 

Numerical 

 
 

PU, SN, NC, 
TE 

 
 

LQG/LTR, H ∞  

 
 

Yes 

 
 

Yes 

 
Vibration 
Suppression of a  
10-Bar Truss 
 

 
Numerical 

 
PU,TE 

 
LQG/LTR, H ∞  

 
Yes 

 
--- 

Cabin Noise 
Attenuation 

 
Numerical 

 
PU,SSE 

 
   “Passive” LTI 

 

 
--- 

 
--- 

 
Active Flutter 
Suppression -  
BACT Problem  
 

 
 

Numerical 
 
 

 
 

PU, SN, 
NC,TE 

 
 

LQG 
 

 
 

Yes 

 
 

--- 

 
Cantilever with 
Piezo-Ceramic 
Sensors/ Actuators 
 

 
 
 

Experimental 

 
 
 

PU, SN,TE 

 
 
 

--- 
 

 
 
 

--- 

 
 
 

--- 

 PU - Plant Uncertainties;     SN - Sensor Noise;   NC - Non-Collocation of Sensor/Actuator
TE - Transient Excitation;    SSE – Steady-State Excitation
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Fuzzy Control of The Fuzzy Control of The 
Van Van derder PolPol OscillatorOscillator
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Control  of  a  Van  der  Pol  Oscillator
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Closed Loop – Uncertain System

The nonThe non--linear Van linear Van DerDer PolPol
oscillator has been used to oscillator has been used to 
provide a simple model for the provide a simple model for the 
cylinder wake flow. cylinder wake flow. 

In this closedIn this closed--loop study of the loop study of the 
chaotic oscillator, control chaotic oscillator, control 
strategies were designed using strategies were designed using 
both a constant gain approach as both a constant gain approach as 
well as a variable gain fuzzy logic well as a variable gain fuzzy logic 
controller. controller. 

It was found that a variable gain It was found that a variable gain 
fuzzy logic controller (see fuzzy logic controller (see 
response in figure) is more robust response in figure) is more robust 
and effective in handling plant and effective in handling plant 
uncertainty and the inherent uncertainty and the inherent 
nonlinearity.
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CONTROLLER ISSUESCONTROLLER ISSUES
UPCOMING EFFORTUPCOMING EFFORT

Using Using MATLAB’sMATLAB’s Neural Network Toolbox to reproduce the Neural Network Toolbox to reproduce the 
Controller developed by Controller developed by GilliesGillies for the Cylinder Wake.for the Cylinder Wake.

Further developing the fuzzy logic control approach, based Further developing the fuzzy logic control approach, based 
on on MATLAB’sMATLAB’s Fuzzy Logic Toolbox. Fuzzy Logic Toolbox. 

Computational Evaluation of Controller (Benchmarks I & II). Computational Evaluation of Controller (Benchmarks I & II). 

Experimental verification of the developed Fuzzy Controller Experimental verification of the developed Fuzzy Controller 
(Benchmark III). (Benchmark III). 

Note: The Benchmarks include Robustness TestingNote: The Benchmarks include Robustness Testing
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 ASSETS EFFORT 
Modeling TRUTH MODELS 

   1. COBALT: Translating Cylinder  
   2. FEMLAB: Wake Instability  
LOW-DIMENSIONAL MODELS 
  1. POD Model of Cylinder 
  2. POD Model of Ginzburg-Landau 
Equation. 

TRUTH MODEL 
Modify COBALT to enable extensive 
closed-loop control studies. 
LOW-DIMENSIONAL MODEL 
1. Quantitatively introduce control input 
into POD Model. 
2. Observability and Controllability  

Estimator 1. Neural estimator provides representation 
of the wake by POD modes generated by 
non-stationary data ensemble (Gillies). 
2. Application of MATLAB Fuzzy Logic 
Toolbox for prediction of chaotic time series 
prediction.  

1. Reproduce the Emulator developed by 
Gillies for the Cylinder Wake. 
2. Tuning the resulting fuzzy 
approximator for quantitatively emulation. 
3. Benchmark test and evaluation of the 
Estimator. 

Controller 1. Neural controller provides mapping of 
POD states to actuator commands (Gillies). 
2. Successful application of fuzzy logic for 
control of flexible structures. 
3. Fuzzy Logic control of the chaotic Van 
der Pol oscillator. 

1. Reproduce the Controller developed by 
Gillies for the Cylinder Wake. 
2. Further developing controller using 
MATLAB’s Fuzzy Logic Toolbox.  
3. Benchmark test and evaluation of the 
Controller. 

SUMMARY OF ASSETSSUMMARY OF ASSETS
AND EFFORTSAND EFFORTS
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MODELING AND CONTROLMODELING AND CONTROL
IDENTIFICATION OF RISK AREASIDENTIFICATION OF RISK AREAS

 EFFORT RISKS 
Modeling TRUTH MODEL 

Modify COBALT to enable extensive 
closed-loop control studies. 
LOW-DIMENSIONAL MODEL 
1. Quantitatively introduce control input into 
POD Model. 
2. Observability and Controllability  

TRUTH MODELS 
 Low - Medium 
 
LOW-DIMENSIONAL MODELS 
  High 

Estimator 1. Reproduce the Emulator developed by 
Gillies for the Cylinder Wake. 
2. Tuning the resulting fuzzy approximator 
for quantitatively emulation.   
3. Benchmark test and evaluation of the 
Estimator. 

1. Reproduction of Gillies Emulator: Low 
 
2. Quantitatively Emulation: Medium 
 
3. Estimator T&E: Medium-High.  

Controller 1. Reproduce the Controller developed by 
Gillies for the Cylinder Wake. 
2. Further developing controller using 
MATLAB’s Fuzzy Logic Toolbox.  
3. Benchmark test and evaluation of the 
Controller. 

1. Reproduction of Gillies Controller: Low 
 
2. Development of Controller: Medium 
 
3. Controller T&E: Medium-High. 
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CONCLUSIONSCONCLUSIONS

A structured approach has been developed to A structured approach has been developed to 
advance the stateadvance the state--ofof--the art of closedthe art of closed--loop flow loop flow 
control.control.
The approach addresses the multiThe approach addresses the multi--disciplinary disciplinary 
challenges associated with this research effort.challenges associated with this research effort.
Currently, the versatile team at USAFA armed with Currently, the versatile team at USAFA armed with 
the necessary computational and experimental the necessary computational and experimental 
assets  hopes to realize the vision of effective assets  hopes to realize the vision of effective 
closedclosed--loop flow control. loop flow control. 
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